加入收藏 | 设为首页 | 会员中心 | 我要投稿 辽源站长网 (https://www.0437zz.com/)- 云专线、云连接、智能数据、边缘计算、数据安全!
当前位置: 首页 > 云计算 > 正文

工业互联网如何赋能高端制造?

发布时间:2019-08-20 05:19:57 所属栏目:云计算 来源:钛媒体
导读:副标题#e# 2019年,工业互联网首次进入政府工作报告,2019政府工作报告专门提及打造工业互联网平台,拓展智能+,为制造业转型升级赋能。 最近工业互联网非常热,一是智能+对工业转型升级的重要性,二是在科创板开市之后,与工业互联网、产业互联网相关的科

工业互联网平台,能够起到加速整个价值传递过程的作用,一方面能够汇聚来自不同设备和业务系统的数据,构建数据中台,对数据进行规范和治理,以及针对离散化、场景化的数据分析;另一方面,它也提供了大量的跨应用系统的能力重用模块,让应用的交付、数据的分析变得更便捷和更简单。

相对于传统的PLC、DCS、MES或ERP这些传统的IT和OT系统,工业互联网应用着眼点放在了新技术解决老问题上,它通过运用物联网、大数据、云计算和人工智能等先进的IT技术,去解决原先由于数据量、数据处理能力、实时性等限制而不能得到很好解决的设备可靠性、工艺质量以及企业经营决策等方面问题,可以说是原有IT和OT系统的升级和重构。

高端制造的工业互联网应用非常离散化,应用场景主要是三类,设备资产管理、运营性能管理和生产经营决策。

资产性能管理的目标是提高资产(也就是设备)的可靠性,避免非计划停机;只有保证了设备的可靠性,才能保证运营过程中的产能、质量、成本的有效提升,才能优化运营指标;而只有保证了运营效率的提升,才能实现企业经营利润的提升和经营风险的规避,所以这三层是通过数据的价值环环相扣的。

工业互联网如何赋能高端制造?

应用场景1:资产性能管理。

大型高端制造都有关键的大型设备,这些设备在连续生产过程中的停机风险,会造成很大影响。普遍来说,进行有效设备维护的策略有:

一是被动式维护,就是坏了再修,这种维护成本最高;

二是预防性维修,为了避免被动维修引起的设备停机停产,现阶段采用较多的是预防性维修,也就是定期保养;

三是视情况维修或基于状态维修,因为前两种的成本相对比较高,因此采用振动分析、红外、超声等检测仪器,对关键设备进行相应的判决和检测,基于检测的结果决定是否要维修,提前修还是推后修;

四是预测维修,基于海量数据分析对设备的实时状态做评估,再决定是否要维修;第五,RCM或基于风险评估,结合实时数据对设备保养策略的一系列计算,得到基于风险管控的维护策略,实现更精准的维护。目前GE和Uptake已经做到了基于可靠性的维修或基于风险维护的完整策略。

现在的问题是:一,无法实现实时的判决和诊断,无法根据动态的工况进行调整;二,无法实现精确的故障定位,无法实现精确的指标计算;三,无法实现精确的寿命预测,无法实现预测性维护;四,无法积累、优化和复制专家经验,无法实现知识的自我学习和进化。

资产性能管理系统主要涉及三方面:

一是数据,即机器的实时数据、历史维护记录、失效记录、产品手册等;

二是机理,像FMEA、控制理论等基本的工业模型;

三是数据分析,变点检测、时序预测、聚类回归、机器学习、神经网络等结合在一起,才能产生一个相对完整的设备资产管理系统,实现实时监测、故障诊断预测、可靠性管理等一系列功能,最终目标是降低停机概率、降低运营风险、实现更快的响应能力。

怎么利用数据分析实现资产的高效性能分析呢?主要还是利用机器的数据。

基于机器的历史数据可以构建不同状态下的历史数据样本,开发各类故障的特征模型,与当前传感器数据进行对比,从而对当前的设备进行实时的健康评估。

基于历史数据也可以构建性能预测指标,通过对比指标就可以知道设备未来在什么时间可能会出问题,可以计算剩余寿命以优化维护策略。

应用场景2:运营性能管理。

在工业生产过程中有很多设备都产生数据,像工艺数据、质量数据、维护数据等,都可以通过工业互联网平台采集出来,做工艺参数优化、良率优化、虚拟量测、关键指标建模、燃烧环保优化、能源管理等一系列分析。

通过实时采集生产过程中设备、工艺、质检、环保、环节数据,结合数据挖掘和人工智能分析,可以实现生产工艺、品质还有运营效率全方面的优化。

举几个简单例子:

一,工作模式自动识别。

在运营中对设备的工作状态进行识别,只有识别了不同的工作状态才能区别出在不同工作状态下的工作效率和关键KPI指标,这种识别原来全是手动识别或是专家经验识别,现在完全可以通过机器学习再结合专家经验的方式提取规则,创造自动识别的过程。

二,异常检测。

由于能够区分不同的工作状态,才能对不同的工作状态设一个稳定值,这叫SPEC值。一个设备可能工作在不同的SPEC和不同的工艺过程下,所以每个工艺过程要区分不同的工作状态,才能知道应该改进哪些关键工艺参数。

三,根因分析。

根因分析就是有多少种原因会导致最终的不良或排放、燃烧等关键指标低下。这种根因分析往往是在不同时间维度上产生的,可能几个小时之前的一个工艺参数会导致最后生产结果的质量、品质或关键指标的劣化。

数据分析需要把不同时间维度的海量数据结合在一起,通过相关性分析、相似度搜索等数据分析的方式,匹配到最有可能产生问题的一个匹配关系上。

四,SPEC的快速确定。

在不同工艺上,比方说85%、70%、65%的良率情况下对应不同的工艺参数范围,很多时候都需要从历史数据中找出相应特定条件下相关信号的工作范围,进而确定相应的SPEC值,这有助于帮助一个企业快速投产、快速从小批量生产进入到大批量生产的加速过程。

五,稳定性控制和评估。

在关键的生产过程中,有一些海量产出关键指标,比如半导体生产过程中的CD值,即关键的线宽要保证在一定的范围内抖动。利用数据分析,通过SPC进行稳定性控制,实现相应的过程控制,以保证关键过程产出的稳定性。

六,工艺仿真。

在确定了输入和输出之间的关系后,能否通过回归或者神经网络找到一个线性、非线性的模型,当最终检验结果的良率从85%掉到70%时,调整输入到某个关键值就能把良率从70%再拉回到85%?这些都可以通过海量的工业数据分析实现。

(编辑:辽源站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读